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Using Measures of Vowel Space for Autistic
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Abstract—Autism Spectrum Disorder (ASD) is a neurodevel-
opmental disorder that is prevalent and heterogeneous. Autistic
traits describe a wide heterogeneity of behavior symptoms of ASD,
and these traits are reflections of core neurodevelopment function
deficits. Researchers have predominantly taken a clinical angle
to understand autistic traits. They have been developing various
clinical-grade instruments with behavioral codes to quantify autis-
tic traits for diagnostic and research purposes. However, the need
for highly trained professionals and the inevitable subjectivity limit
their usage. Hence, researchers have been developing computa-
tional methods to address these issues. Among many efforts, meth-
ods based on computing speech have emerged rapidly due to their
ability to characterize communicative behaviors and social inter-
actions. Our work addresses one particular under-studied speech
aspect: articulation-related acoustics, one of the broad autism
spectrum symptoms. In this paper, we examine the articulatory
information in a natural spoken interaction through measures of
vowel space characteristics (VSCs) to understand autistic traits.
Specifically, we approach by modeling statistical relationships of
the corner vowel distributions and the interpersonal correlation
of these relationships in conversation. Our method is evaluated by
deriving VSC features and using them in ASD classification and
regression tasks. We found these features predict autism-related
communication assessment and add additional information to clas-
sification tasks. Furthermore, our analyses show a relationship
between VSCs and autism-related communication deficit and also
imply differences in VSCs between typical developing people and
each ASD subgroup.
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I. INTRODUCTION

AUTISM Spectrum Disorder (ASD) is a prevalent, and
broad heterogeneous spectrum of neurodevelopmental

disorders. ASD prevelence rate is approximately 1.5% [1], [2]
across countries, and 1% in Taiwan [3]. It is estimated to have a
15 trillion (USD) social cost by 2029, according to Cakir et al.
[3]. The cost of medical, therapeutic, or educational expenses
has become an issue that cannot be neglected [4]. Symptoms,
which vary drastically from one person to another, are often
associated with comorbidities [5], and can cause significant
health problems for people with ASD.

Autistic traits describe sets of behavioral symptoms of ASD.
These traits reflect deficits of core neurodevelopmental func-
tions, featuring social-communicational deficits and repetitive
sensory-motor behaviors [6]. For example, ASD often can not
have suitable eye contact with other people when having conver-
sations, making their interlocutor feel socially-awkward. Many
ASD people are also unwilling to talk to others, despite having
the proper speech & language abilities. In severe ASD cases, they
can not even convey a complete message with their speech due to
their incoherent usage of words or sentences. Furthermore, the
inherent heterogeneity of the spectrum of autistic traits makes
it difficult to stratify and phenotype ASD easily. For example,
the latest edition of the Diagnostic and Statistical Manual of
Mental Disorders (DSM-5) can not identify many cases that
are diagnosed as ASD in its previous version (DSM-4), which
causes controversies [7].

Through decades of studies, researchers have predominantly
taken a clinical angle to quantify and understand autistic traits.
Various clinical-grade instruments are developed using manual
behavioral codes to quantify autistic traits. For example, the So-
cial Responsiveness Scale (SRS) [8] and Social Communication
Questionnaire (SCQ) [9] are two commonly used clinical instru-
ments for autistic traits profiling. Advanced ASD assessment
instruments such as Autism Diagnostic Observation Schedule
(ADOS) [10] and Psychoeducational Profile (PEP-3) [11], mea-
sure patient’s autistic trait through in-person interviews. These
clinical-grade instruments are designed to understand the autistic
traits of the patients comprehensively and are used for diagnostic
and even research purposes. However, most valid and reliable
assessments or diagnostic instruments need highly trained pro-
fessional practitioners. Moreover, controversial yet probable, a
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positional paper stated that human observational assessments
would be prone to inevitable subjectivity and most importantly,
to non-scalable issues [12], bringing limitations to the current
status-quo usage of these existing clinical instruments.

Developing automated methods has been regarded as having
the potential to address these issues. Among many efforts,
methods based on computing speech and language have emerged
rapidly due to their ability to characterize the two most key
dimensions of autistic traits: communicative and social behav-
iors during spoken interactions. Recent speech and language
analytics for autistic traits mainly focus on speech acoustics,
language, and conversation. A common approach of speech
acoustics is to quantify ASD patient’s atypical prosody. For
example, Bone et al. designed and investigated various acoustic
features to quantify abnormal traits in the speech prosody of
ASD [13], [14], [15]. Computational methods of word usage
has also been used to quantify autistic traits. For example, Li
et al. quantified the term frequencies and word attributes of
ASD patient’s atypical usage of words or phrases [16] and
found these measurements reflect the stereotyped idiosyncratic
phrases of ASD. As speech acoustics and language are often
used to quantify autistic traits, some studies focus on the acous-
tics within articulation—the acoustic patterns of certain phone
units [17], [18]. This approach can measure speech acoustics
when the participant is too young to speak meaningfully [17],
and can also leverage the characteristic of tonal language (like
Mandarin) to study a specific ASD cohort [18]. Lastly, methods
for computing conversational dynamics, an angle that focuses
on studying interactions, can also quantify autistic traits. For
example, our past study used acoustic features with modified
BERT embedding derived from interlocutors (where one of them
is an ASD patient), and demonstrated that these can classify
subtypes of ASD and predict autistic symptom severity [19].

While several related works exist, this work addresses one
particular under-studied aspect of speech analysis for ASD:
articulation-related acoustics. Speech sound error is one of
the autistic traits that continue through adulthood. Few studies
quantify this aspect of speech disorder for ASD. Several notable
studies include efforts carried out by Bishop et al. and Kissine
et al. Bishop et al. found an inverse relationship between autistic
severity and vowel intelligibility. To be specific, vowel intelli-
gibility, measured with vowel space area, is significantly cor-
related with pragmatic communication scores that are inversely
correlated with autism severity [20]; Kissine et al. found autistic
adults are more rigid in their articulation compared to typical
developing adults by measuring their articulatory properties on
vowel space [21]. These studies examined articulation acoustics
but in highly-controlled experimental settings, such as mea-
suring acoustic values for pre-set words. This study, however,
investigates autistic traits of articulatory acoustics when the ASD
participants engage in natural spoken interactions by measuring
vowel space characteristics (VSCs).

This study contributes one of the first comprehensive and
automated studies in developing vowel space characteristics
measurements (VSC features) to characterize ASD-related so-
cial and communication traits. These VSC features are derived
to characterize vowel articulation at different granularity, i.e.,

at an utterance level for communication function deficit and
across an entire interaction episode for social function deficit.
Our study shows that by fusing VSC features with the known
high predictive power of acoustic-prosodic features improves the
results in both ASD classification and severity score regression
tasks. Additionally, we observe that formant dependency—a
new VSC feature that measures articulator flexibility—and inter-
vowel dispersion—indices measuring the discrimination of three
corner vowel clusters in vowel space—correlates to the deficit
in ASD communication severity. Moreover, simple fusion of
VSC feature sets with acoustic-prosodic features achieves a
0.482% Pearson’s correlation in regressing ADOS communi-
cation score, which is competitive to the prior SOTA that uses
complicated and large BERT-based deep learning methods. Our
result demonstrates the feasbility of using VSC features to
stratify the heterogeneity of ASD.

The roadmap of this paper is in the following. In Section II
we summarized prior work and pointed out the novelty of this
research. Section III provides details about our experimental
material. Section IV elaborates on how to derive those VSC
features. Experiments consisting of three classification tasks
and a regression task followed by analyses are presented in
Section V. Finally, Sections VI and VII are the discussion and
conclusion.

II. RELATED WORKS

The following section summarizes relevant prior works that
have computationally investigated the two aspects of autistic
traits: speech production-related communication impairment
and interaction-oriented social reciprocity deficits.

A. Speech Production-Related Communication Impairment

Many researchers have designed autistic trait-related acoustic
parameters to characterize ASD’s speech communication im-
pairment. They have shown the effectiveness of using prosodic
features in modeling autistic speech [22]. However, the use of
articulation-related acoustics parameters to characterize ASD is
much less explored. For example, Bishop et al. analyzed the
Vowel Space Area (VSA) of adult ASD participants and found
that poor pragmatic communication skills cause narrower vowel
space expansion and are associated with autistic traits [20].
Another study by Kissine et al. discovered phonetic inflexibil-
ity (stability) of autistic adults by analyzing the intra-category
vowel dispersion of their vowel production [23]. Talkar et al.
supposed that the coordination of articulators characterized by
the correlation of the acoustic measurements between several
articulators can differentiate ASD from TD. They found that
ASD participants have lower precisions in their articulator move-
ments [24].

Despite a few empirical studies that have shown that the
articulation properties of ASD differentiate them from typical
developing people and also reflect their autistic traits. The role of
articulation-related acoustics in autism-related communication
deficits remain largely unclear, especially in the context of spon-
taneous spoken interactions. To better understand the articula-
tory characteristics of each ASD participant, the setting in which
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one performs study to assess an ASD participant’s articulatory
performance needs to be considered. For example, past research
proposed that although speech sound error is one of the symp-
toms related to ASD, not every standard speech test is suitable
for detecting speech sound error (SSE) of ASD testees [25].
McKeever et al. supposed that some of the standard speech
test, such as the Photo Articulation Test [26] lacks sufficient
articulatory variability. A complicated and naturalistic speech
task, such as spontaneous conversation, is more suitable than
single-word contexts to characterize the SSE of an individual
ASD. The reason is that in normal conversation, a person needs
to pay additional attention to the interactional context instead
of merely focusing on speaking. Moreover, the challenges of
adapting to the ambient environment induce SSE in an ASD
patient [25]. In brief, although there have already been abun-
dant studies that found relationships between autistic traits and
speech prosody, the relationship between articulation-related
acoustics and communication traits of ASD is under-studied.
Furthermore, none of these prior research works in a naturalistic
spoken interaction context, e.g., spontaneous dialogs.

B. Interaction-Oriented Social Reciprocity Deficits

During face-to-face conversations, people actively adapt their
vocal expressions to express their emotions and execute social
functions; however, these skills require adaptive skills, which
challenges people with ASD. ASD patients demonstrate inflex-
ibility in voice modulation during conversations. For example,
several reports from past studies have shown that ASD partici-
pants have lesser synchrony and convergence than those without
ASD [27], [28], [29]. Owing to the deficit in social functions, the
ASD participants present different spoken interaction patterns
from the non-autistic participants. Past researchers have devel-
oped algorithms to characterize these atypical autistic-related
speech behaviors. For example, many studies quantify prosodic
attributes to characterize the dyadic interplay in which ASD
participants are involved. They found that typical-developing
people usually show more speech accommodation in conversa-
tions than ASD participants do [27], [28], [29]. Although prior
studies have demonstrated repeated evidence that people with
ASD have reduced speech accommodation or entrainment to
their interlocutor in their speech prosody, the speech accommo-
dation of ASD reflected in articulatory-related attributes seems
unclear.

This study further advances the studies of autistic traits from
an angle of articulation-related acoustics. This paper advances
prior works by measuring vowel space characteristics (VSCs)
in conversations, a more realistic phonetic environment, and
explores the relationship between VSCs and autism-related
communication deficits. We also measure the dyadic interplay
of based on these VSC measurements to characterize autistic
traits.

III. DATASET DESCRIPTION

Spoken interaction data is collected through the Autism
Diagnostic Observation Schedule (ADOS) interview process

TABLE I
DATABASE DESCRIPTION: THE DEMOGRAPHICS OF THE PARTICIPANTS

IN THIS DATABASE

cite. ADOS involves a trained investigator conducting a semi-
structured interview with the ASD participant. ADOS is orga-
nized into different sessions to elicit targeted ASD participant’s
spontaneous behaviors for the researchers and psychiatrists to
assess their social and communicative functions. A couple of
sessions are conversations in nature where the investigator and
participant engage in dialogs about a certain topic. ‘Emotion’
session is a part of ADOS where the investigator discusses with
the participant about his/her past emotional experiences in life,
creating a scenario that simulates natural conversation. This
kind of session provides sufficient materials for speech-based
algorithm development. In fact, most recent studies on ASD
participant’s spontaneous speech behaviors utilize this particular
session in ADOS as materials, e.g., Bone et al. used these ses-
sions to design features for characterizing ASD-related atypical
prosody; Li et al. trained deep neural networks in these sessions
for designing diagnosis algorithms.

Our ADOS data samples are collected by collaborating with
National Taiwan University Hospital.1 The data contains audio
recordings from two lapel microphones attached to the investi-
gator and the participant and video recordings from two fixed
cameras facing the front of each person (details can be found
in [30]). Table I shows a summary of participant demographics.
There are a total of 86 ASD and 20 TD participants recruited
in this database. The mean and standard deviation of age of the
participants are ASD: 16.37, 4.34 and TD: 13.35, 4.02. The sizes
of the cohorts are: ASD: 76 male and 10 female; TD: 10 male
and 10 female. The mean and standard deviation of ADOS social
and communication scores are: ASD: 11.71, 4.49 and TD: 3.64,
3.92.

This database is one of the largest in scale, and to our knowl-
edge, is one of the few in Mandarin Chinese. This database
has already been used in several prior studies. For example,
our prior studies derived multi-modal speech and language fea-
tures for ASD subgroup differentiation [30], [31]. Additionally,
our recent study used a conversation-level modeling approach
for automatic communication code assessment, and the study
achieve 0.567% Pearson’s correlation to manual coding [19].
In this work, we utilize the ‘emotion’ part of ADOS session
to measure articulatory properties for autistic trait characteriza-
tion. The emotion part lasts about 5–10 minutes, starting with
positive emotion experiences like happiness and ending with
negative emotions like fear. There are 12,010 utterances in the
selected dataset totaling 67.35 minutes. Each session contains
111 utterances and 651 phones on average.

1Approved by IRB: REC-10501HE002 and RINC-20140319.
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Fig. 1. Overall approach to deriving vowel space characteristic (VSC) features. The top of the figure shows the entire procedure, and the lower part shows the
details of each component. The input speech will first undergo a pre-processing procedure, which includes forced alignment, feature extraction, two outlier filtering
steps: IQR filtering and KDE filtering, and speaker normalization. Then the process is separated into two streams. The first stream gathers the whole session samples
to calculate three vowel space characteristics (VSCs): inter-VD, intra-VD, and FD. Then utterance-level VSC features are calculated from those VSCs. The second
stream first segments a session into multiple minimum phone units (MPUs). VSC features are calculated at those units, forming two VSC-based time series. From
the two time series, we compute the gradual change (GC) of each and calculate several synchrony measuring metrics on the GC pair, creating conversation-level
VSCs.

Fig. 2. Illustration of high and low values of conversation-level features.

IV. METHODS

Our goal in this paper is to characterize the communication
traits of ASD by measuring the vowel space characteristics
(VSCs) of ASD’s speech production and the social traits of ASD
by measuring the interaction of vowel space characteristics be-
tween ASD participants and investigators during dialogs. These
measures of VSCs are calculated at two levels of granularities:
utterance-level VSCs and conversation-level VSCs. Utterance-
level VSCs are acoustic values extracted from the participant’s

spoken sentences or utterances. In contrast, conversation-level
VSCs focus on the interaction between two talkers (an investiga-
tor and a participant) in their conversation. The utterance-level
VSCs were operationally calculated from the corner vowels
collected throughout the session, which are used to character-
ize ASD communication traits. The conversation-level VSCs
features were operationally derived by calculating on two time
series from the investigator and participant (as demonstrated in
Fig. 2), which characterize the social traits.
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For utterance-level VSCs, we derive three feature sets measur-
ing vowel intelligibility, vowel variability, and articulator flex-
ibility, respectively. Vowel intelligibility refers to the clarity or
articulation of vowels; vowel variability represents the flexibility
or adaptability of a person in articulating vowels, and articula-
tor flexibility refers to the coordination or synchrony between
articulators (like tongue and jaw). The vowel intelligibility is
characterized as inter-vowel dispersion, while vowel variability
is represented as intra-vowel dispersion. These two common
feature sets were used in previous research that measured vowel
intelligibility with VSA [32] and assessed vowel variability with
inter-vowel dispersion [33].

Lastly, articulator flexibility is another important measure.
Since speech production is a process that involves the com-
plex coordination of articulators such as the tongue, jaw, and
larynx [34], [35], flexible controlling of the articulators is one
of the keys to smooth speech production. According to past
research, the coordination of fine motor control is atypical
in people with ASD [24], [36]. However, there needs to be
computational methods for quantifying this coordination per-
spective of articulatory characteristics. In this work, we pro-
pose to compute the dependency between the first and second
formant on vowel space to characterize the coordination of
articulators.

For conversation-level VSCs, we aim to measure the inter-
action pattern, so we adopt commonly used interaction met-
rics [37], [38]: proximity, synchrony, convergence, gradual
change of the investigator, and gradual change of participant
to represent the interactions of VSCs between the investigators
and the participants.

A. Preprocessing

Since these features are computed in spontaneous conver-
sations (i.e., ADOS sessions), preprocessing is needed to ex-
tract robust phone-level estimations. The preprocessing pipeline
includes forced alignment, first and second formant extrac-
tion, outlier filtering, and speaker normalization. We then com-
pute utterance-level and conversation-level VSC features after-
ward. The forced alignment is done by our self-trained Taiwan
Mandarin force aligner, and the formants are extracted using
praat [39]. The details are described below.2

1) The Taiwan Mandarin Force Aligner: The aligner con-
tains an acoustic model and a language model. The acoustic
model is a factorized time-delayed neural network (TDNN-
f) [40]. It was first pre-trained on a combination of several
Taiwanese Mandarin corpus containing collected from radio
broadcast programs [41]. The total duration of the ASR pre-
training data is 172 hours. The Mandarin aligner was then
fine-tuned on a subset of our ADOS. Given the paired word-
level transcript (transcript that is composed of words instead
of phones) and audio segments in our ADOS database, we can
retrieve the timestamps of the corner phone boundaries with

2We provide our code for deriving the VSC features on our gitlab website
https://biicgitlab.ee.nthu.edu.tw/jack/tbme2021.git. The forced alignment step
in preprocessing can be executed using any alternative ASR model.

this Taiwan Mandarin aligner. The acoustic values within these
phone boundaries are what we are interested.

2) Formant Extraction: We extract the first and second for-
mant (F1, F2) values of the corner vowels /a/, /u/, /i/. The
formant values are estimated with linear predictive coding (LPC)
algorithm using praat. We averaged over the middle position
value at 49% to 51% of each vowel’s duration. This averaged
F1 F2 value represents a data sample on vowel space.

To prevent noisy estimates, the data samples on vowel space
underwent subsequent procedures to remove the potential out-
liers. First, we apply interquartile range (IQR) filtering to each
person’s data samples. The data samples that fall outside 1.5
times the IQR from the center were removed. After IQR filtering,
we apply another outlier filtering by kernel density estimation
(KDE) filtering. The procedure segments the F1 F2 space into
100 x 100 linear grids, assigns each gridpoint a density score,
and removes the data samples within lower 40% density regions.
During KDE filtering, the density score is estimated by a two-
dimensional kernel, which fits the data samples on vowel space
using density estimation.

To reduce the variation caused by factors irrelevant to autis-
tic traits, we utilize a speaker normalization proposed by
Lobanov [42] and tested by flynn [43]. The normalization pro-
cess is as below,

FN
i =

(Fi − μi)

σi
(1)

where we subtract each speaker’s formant values (F1, F2) from
their formant mean and divide the formant values by their
formant variances.

The preprocessing step generates robust data samples used
to derive the utterance and conversation level VSC features.
Note that the Taiwan Mandarin force aligner’s accuracy achieve
90.2% (recall) of corner phones with 30 ms phone boundary
tolerance. The average formant values are computed, in which
/u/ (F1:509.3± 123.6 F2:876.9± 190.1), /i/ (F1:561.9± 249.4
F2:1993.4± 435.1), /a/ (F1:844.9± 262.7); these numbers are
similar as previously reported [44].

B. Utterance-Level VSC Features

The use of acoustic measurements to infer articulatory status
has been studied in clinical research [45]. Firstly, the expansion
area of the corner vowel can measure articulatory range to assess
the severity of speech disorder [32], [46]. Secondly, articulation
depends not only on the functions of the articulators (tongue,
jaw, larynx) but also on their coordination. We measure the
formant-based vowel space characteristics from three aspects:
intra-vowel dispersion, inter-vowel dispersion, and formant de-
pendency. Features derived from these aspects are operationally
extracted by gathering all phone samples and then processing
them with proposed algorithms. The following paragraphs de-
scribe the details of this process.

1) Intra-Vowel Dispersion (Intra-VD) and Inter-Vowel Dis-
persion (Inter-VD) Features: Researchers have used indices of
VSCs to predict autistic traits. For example, vowel space area
(VSA) and intra-vowel dispersion indices were used to measure
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the vowel intelligibility and stability of ASD participants [20],
[21]. The VSA calculates the triangle area expanded by the mean
of each corner vowel, and the intra-vowel dispersion proposed by
Kissine calculates the euclidean distance of each phone sample
to it’s corresponding phone center. Both of them capture the
mean positional relationship of corner vowels in the F1 F2
formant space. Given our articulation’s natural variability, we
develop a distributional approach by deriving the intra-vowel
dispersion and inter-vowel dispersion feature sets. The intra-
vowel dispersion and inter-vowel dispersion are represented by
four scatter matrices: the within-class covariance matrix (SW ),
the between-class covariance matrix(SB), the total covariance
matrix (ST ), and the ratio of SB to SW (S−1

W SB). The first three
matrices are derived by:

SW =
1

N

C∑
i=1

Ni∑
j=1

(xij − μi)(xij − μi)
T (2)

SB =
1

N

C∑
i=1

Ni(μi − μ)(μi − μ)T (3)

ST =
1

N

C∑
i=1

Ni(xij − μ)(xij − μ)T (4)

where, C and Ni are the number of categories and the total num-
ber of samples in the phone category i, respectively. N is the total
number of samples, and xij are samples of 2-dimensional vector
(F1 and F2). μi is the mean of samples in the phone category i,
and μ is the overall mean. These matrices represent generalized
variance [47] of these corner phones on F1 F2 vowel space.
The within-class covariance matrix measures the intra-vowel
dispersion, which reflects vowel stability. The between-class
covariance matrix, total covariance matrix, and the ratio of SB

to SW (S−1
W SB) measure the inter vowel dispersion, reflecting

vowel intelligibility but with three different types of measures.
Additionally, all the matrices processed by a determinant or

trace that converts each matrix to a single value. The higher
determinant or trace of SW , denoted as within-class covariance
or variance (WCC or WCV), implies lower vowel stability.
The determinant or trace of SB is denoted as between-class
covariance or variance (BCC or BCV), and that of ST is denoted
as total covariance or variance (TC or TV). The higher of these
values implies higher vowel intelligibility.
S−1
W SB , a positive semi-definite matrix, represents the ratio of

within-class covariance to between-class covariance. First, we
calculate the determinant and trace on S−1

W SB , and denote them
Det(W−1B) and Tr(W−1B). We also calculate four common
estimates of within-between class covariance ratio: Pillai’s trace,
Hotelling-Lawley’s trace, Wilk’s lambda, and Roy’s largest
root. The four estimates are derived by: Pillai =

∑q
i=1

λi

1+λi
,

Hotelling=
∑q

i=1 λi, Wilks=
∏q

i=1
1

1+λi
, Roys=max(λi) in

which λi denotes the eigenvalue of S−1
W SB . The higher Pillai,

Hotelling, and Roys values represent higher vowel discrimina-
tion. On the contrary, the higher index value of Wilks the lower
the vowel discrimination.

2) Formant Dependency (FD) Features: The intuition of this
measurement is to infer the articulatory coordination with acous-
tic measurements. We calculate four correlation coefficients:
Pearson’s correlation coefficient, spearman’s correlation coeffi-
cient, Kendall’s tau correlation coefficient, and distance correla-
tion coefficient. The four correlation coefficients are calculated
on variables: F1 and F2 from all the retrieved corner vowels.
Finally, the FD feature set has 4 features: PearF1F2, SpearF1F2,
KendallF1F2, and DCorrF1F2.

In brief, there are totally three feature sets Inter-VD. Intra-VD,
and FD composing of 16 features (summarized in Table II).
These features, pre-processed and gathered through a session,
represent one’s vowel space characteristics.

C. Conversation-Level VSC Features

Measuring interaction between two talkers in dyadic interac-
tion can be operationally designed as computing interrelation-
ship between two time-series of acoustic features. A classic ex-
ample is measuring the proximity, synchrony, and convergence
of acoustic/prosodic between the two feature series to charac-
terize speech entrainment [37]. We follow similar approaches
to characterize the dynamic interplay between the investigators
and the participants but with VSC features. Furthermore, gradual
change of an person’s behaviors over time is also important
indices to measure interaction as it has been shown to reflect
certain types of affectionate behaviors [38]. Motivated by these
studies, we derive conversation-level VSC feature sets involv-
ing three steps: extracting features from minimum phone units
(MPUs), estimating the speaker’s gradual change (GC) series,
and calculating the phonetic conversation-level VSC features.
The purpose is to derive a temporal progression of VSC features
from both interlocutors, so that we can calculate metrics to
represent the VSCs’ relationship from them. To collect enough
phones in all temporal segments, we define MPU and calculate
VSC features within each of them. The following describes this
process.

1) Extracting VSC Features From MPUs: To derive a tem-
poral progression, we segment each conversation session into
several units and calculate the progression of VSC features. We
define the MPU as time intervals, segments of a conversation
session that contain at leastNmpu amounts of each corner vowel
(we setNmpu=2 in this study, so there will be at least six vowels
contained in an MPU). Then, we calculate inter- and intra-vowel
dispersion and vowel formant dependency within each minimum
phone unit (MPU). In brief, the VSC features extracted from
vowels in each MPU comprise a series of VSC features. The
progression and their inter-dependency of the series from two
interlocutors is what we aim to estimate.

2) Estimating the Speakers’ Gradual Change (GC) Series
of VSCs: Prior studies derive relationship metrics by first cal-
culating acoustic-prosodic feautres in inter-pausal unit (IPU),
and then interpolate the values between the IPUs [37]. We
use a similar approach, but define MPU as the basic unit
instead. The interpolated time series are denoted as gradual
change (GC) series, in which we use k-nearest neighbors (KNN)
regression to interpolate values between each MPU. In each
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TABLE II
SUMMARY OF THE FEATURES USED IN THE EXPERIMENTS

conversation, we estimate the investigator and the participant’s
GC series, denoting them as f inv and fpart. Firstly, to prevent
the potential outliers before fitting KNN, all phone instances
that are three standard deviations away from the mean value
in each MPUs are dropped. Secondly, f inv is defined within
the interval [tinvmin, tinvmax], where tinvmin and tinvmax represent the
initiation and end of investigator’s MPUs (same rule is applied
to fpart). Thirdly, the common support: t− = max(tinvmin, t

part
min )

t+ = min(tinvmax, t
part
max) are defined to denote the time interval

which the two talkers have overlap.
3) Calculating Conversation-Level VSC Features From the

GC Series: We calculated five types of relationship metrics to
derive conversation-level VSC features: 1) Proximity, 2) Con-
vergence, 3) Synchrony, 4) GCinv 5) GCpart. The details are in
the following.

1) Proximity: the proximity feature represents the closeness
of interlocutors across the whole conversation. It is calcu-
lated by the mean distance of acoustic features between
the two GC series with a negative sign in the front, that
is:− 1

N

∑t+

t=t− |f inv[t]− fpart[t]|. 5

− 1

N

t+∑
t=t−

∣∣f inv[t]− fpart[t]
∣∣ (5)

Here, N denotes the number of points interpolated by the
KNN regressor within the interval [t−, t+].

2) Convergence: the convergence feature measures whether
the two interlocutors are becoming closer across the whole
conversation. It is calculated by the Pearson correlation
coefficient between −|f inv[t]− fpart[t]| and t:

∑t+

t=t−(d[t]− d) · (t− t)√∑t+

t=t−(d[t]− d)2 ·∑t+

t=t−(t− t)2
(6)

where d[t]=−|f inv[t]− fpart[t]|, and d= 1
N

∑t+

t=t− d[t].
3) Synchrony: synchrony features measure the leader-

follower relationship of two talkers. This is calculated by
calculating correlation between f inv[t+ δ] and f inv[t], in

which δ denote a lagging parameter:
∑t+

t=t−(f
inv[t+ δ]− f inv) · (fpart[t]− fpart)√∑t+

t=t−(f
inv[t+ δ]−f inv)2 ·∑t+

t=t−(f
part[t]−fpart)2

(7)
we iterate δ over a range of values: [−15, −10, −5, 0,
5, 10, 15] (the unit of lagging parameter δ is expressed
in seconds). The final synchrony value is determined by
the selected δ where the absolute value of synchrony
|Synchrony(f inv, fpart)| has the largest value. Positive
Synchrony(f inv, fpart) indicates one of the two talkers
is leading, and the other is following. On the contrary, it
means f inv and fpart evolve in the opposite direction.

4) GC: The derivation of GC features is similar to that of
convergence features. Instead of calculating the distance
between the two talkers, we calculate the investigator’s or
participant’s gradual change of VSC features during the
conversation, that is:

∑t+

t=t−(f
R[t]− fR) · (t− t)√∑t+

t=t−(f
R[t]− fR)2 ·∑t+

t=t−(t− t)2
(8)

where R ∈ {inv, part}. Then, the GC features of the
investigator and the participant are denoted as GCinv and
GCpart, respectively.

In short, we characterize the VSCs interaction status between
the investigators and the participants, which can be derived by
computing dependency between two VSCs series. We use five
functions: Proximity, Convergence, Synchrony, GCinv, GCpart

to describe the dynamic interplay of these two series. Fur-
thermore, higher values of Proximity, Convergence, Synchrony
imply more closeness of the two series. Additionally, GCinv

and GCpart represent the global VSCs trend of the investigator
and the participant. Positive/negative of these values imply a
rising/decreasing trend. Fig. 2 illustrates these features. Since
these features are derived at a conversation-level granularity,
we denote them as conversation-level features. At last, Fig.
1 summarizes the whole process of deriving utterance- and
conversation- level features.
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Fig. 3. Experimental flow of this study.

V. EXPERIMENTS

This work aims to comprehensively study vowel space char-
acteristics by observing differences in TD’s speech and their
relationships with ASD-symptom severity. Autism spectrum
disorder is known as a heterogeneous disorder, and participants
demonstrate a wide variety of functioning skills. Some have
less proficient language abilities, making it difficult to collect
speech from their sessions. By contrast, some ASD participants
show no impairments in communication but show autistic traits
on social dimensions. To investigate the differences of VSC
for coherent groups of ASD participants as compared to TD,
we split our ASD cohort based on ADOS Calibrated Severity
Scores (CSS [48])-determined symptom severity into severe,
moderate, and mild ASD subgroups. Then, the three subgroups
were compared with the TD group in a binary classification
task. The ADOS assessment can assist in judging the severity
of autistic traits. A higher score on the assessment code in
ADOS means that patients have more severe ASD symptoms
indicating serious socio-communicative impairments and vice
versa. Hence, aside from ASD detection, we also perform a
regression task to predict ADOS scores.

In short, several binary classification tasks and a regression
task were conducted in this study. The former differentiates
coherent cohorts of ASD from TD, and the latter task regresses
the ADOS communication score.

A. Definition of Experimental Parameters

Fig. 3 demonstrates the flow of our experiments, in which
two main tasks are followed by analyses. First, classification
tasks contain three subtasks: mild ASD vs. TD, moderate ASD
vs. TD, and severe ASD vs. TD. Then, regression task con-
tains one task: the ADOS communication code (denoted as
ADOScomm) regression task. For each task, we trained a SVM
model with feature sets: VSC features, Conversation[VSC], and
Conversation[P]. (Please refer to the Table II) The VSC and
Conversation[VSC] feature sets are defined in Section IV. Addi-
tionally, we computed the conversation-level acoustic-prosody
features according to past studies [27], [37], [49] but with a
slight modification; implementation details are in section V-C.
In both classification and regression tasks, we present the results
of each single feature set (Single feature set prediction) and

of the feature fusion (Feature sets fusion prediction). When
performing feature fusion, we compared the best-performing
model—model of highest score including VSC features and
the baseline model—model of highest score excluding VSC
features.

The model parameters and evaluation metrics are de-
fined as follows. In each binary classification subtask, the
parameter C of SVC model was tuned within the set:
S={0.001,0.01,0.1,1,5,10.0,25,50,75,100}, and the classifica-
tion results are evaluated using unweighted average recall (UAR)
and F1-score. In the regression task, the parameter ε was tuned
within the set: ε ∈ S. The evaluation metrics of this task in-
clude Mean absolute error (MAE), Pearson’s correlation coef-
ficient (pear), Spearman’s correlation coefficient (spear), and
the concordance correlation coefficient (CCC). Lastly, nested
cross-validation was implemented in both experiments.

B. Model Explanation Through SHAPley Analysis

SHAPley analysis [50], an explainable AI approach, can
evaluate the contributing factors of each feature in a well-trained
model, with each factor explaining the prediction results of
each participant. A given SHAPley model can provide measures
of contributions from each feature to each testing instance.
These measures of contributions denoted as SHAPley values, are
used to understand how each feature contributes to the model’s
final decision. In this study, KernelSHAP was selected as our
explanation model.

1) Explanation of Classification Results: Given an initial
feature combination used to train a classification model, denote
as an initial model: I, and final model, denoted as F, representing
the same configuration of classification model trained on another
feature combination; for example, a feature combination that
contains initial feature sets with some additional feature sets.
The change from the initial to the final model is denoted as I
→ F. There are several key points worth observing. First, the
classification decision on certain samples may change. Those
initially correct but finally incorrect predictions are denoted as
X → O. Conversely, the opposite situations are denoted as O →
X. Second, all of those decisions are determined from decision
values (mostly are distances of the sample to the decision bound-
ary). For instance, in the row, Feat set A → Feat set A+ in the
Table III, participant 21 has a decision value of−0.55 and turned
to 0.27. A participant with a decision value larger than 0 indicates
that he is classified (by prediction model) as TD, and he/she will
be classified as ASD if his/her decision value is less than 0. Third,
the decision scores can be attributed to the SHAPley values of
the feature set combinations and base values from the models.
Since each feature has a SHAPley value, we compute the sum of
the features’ SHAPley values from a feature set to represent that
feature set. Then, the SHAPley value of a feature set represents
the feature set’s contribution to the outcome decision score,
and the base value of the model represents the average of the
model’s decision scores from the training data. These SHAPley
values and a base value compose the model’s decision value [50].
Hence, a SHAPley value having the same sign with the final
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TABLE III
MOCK UP EXAMPLES FOR EXPLANATIONS OF CLASSIFICATION AND

REGRESSION TASKS

decision value means they contribute to the prediction result.
Additionally, we present the base value of the final model as that
of the initial model plus the difference of base values between
the final model and initial model (BASEvalF=BASEvalI +Δ
BASEval, where Δ BASEval = BASEvalF - BASEvalI). Both
feature sets’ SHAPley values and the model’s base value indicate
how the difference between the initial and final model relates to
the final prediction outcome.

Take Participant 21 in Table III as an example. Comparing
the difference between the initial model—feature set A, and
the enhanced initial model—feature set A+, the classification
result turned from wrong to correct. This participant was initially
classified as ASD with a decision value of −0.55 and finally
classified as TD with a decision value of 0.27. Then, refer to the
column: SHAPleyF, the SHAPley values of the model: F shows
that feature sets (k), (d) are in line with the final decision (both
the decision value and SHAPley values are positive), and the
feature sets (e), (c) are inconsistent with the final decision value.
Additionally, Δ BASEval (0.039) implies that using the final
feature combination increases the model’s tendency to predict
TD, so Participant 21 was corrected. Similarly, the same method
can also explain the changes from the initial to the final models
with a reduced feature set compared to the initial model. The
purpose is to understand the changes when one or several key
feature sets are absent. By referring to the row: Feat set A →
Feat set A- in the Table III. Participant 21, in this case, was mis-
classified as ASD with a decision value of −0.22. Feature sets
(e) and (c) have the SHAPley values −0.258 and −0.233, which
are the primary factor causing the misclassification. Besides,
the difference in the base value (Δ BASEval=−0.011) also
attributes to the model’s final prediction result. In a nutshell,
the impact of including or excluding certain feature sets on
the prediction results is what we are interested in. This im-
pact can be observed by adding or removing this feature set

when training a classification model. Using decision scores and
SHAPley values illustrates the changes from the initial to final
models.

2) Explanation of Regression Results: The explanation of the
Regression result is slightly different from that of the classi-
fication. The prediction errors will be measured using Mean
Absolute Error (MAE), calculated from the difference between
the predicted values from the models and the ground truth.
Furthermore, since the predicted values of the models can be
expressed by the composition of SHAPley values, the prediction
error can be quantified using SHAPley values. Equation (9) to
(12) are derived from the relationship between the change in
prediction error and the SHAPley values of each feature set.
To better discuss the attribution of the prediction errors, the
participants were divided into four groups based on their actual
and predicted score of ADOScomm. The groups are defined as
follows,

1) Q1: Ŷ F
q − Yq > 0, Ŷ I

q − Yq > 0

2) Q2: Ŷ F
q − Yq < 0, Ŷ I

q − Yq < 0

3) Q3: Ŷ F
q − Yq > 0, Ŷ I

q − Yq < 0

4) Q4: Ŷ F
q − Yq < 0, Ŷ I

q − Yq > 0

where Ŷ F
q Ŷ I

q represent the predicted ADOScomm of the par-
ticipants by the final model followed by that of the initial
model. Additionally, Yq represents the actual ADOScomm of the
participants q.

Given an initial and final model, each model has one base
value and several SHAPley values from each feature set for each
sample. According to the equations (9)– (12), there are two types
of values we are interested in: the difference between the initial
and final model and the sum of the values from the initial and
final model.

For example, in Equations (9) and (10) the differences
of base values (Δ BASEval), and differences of SHAP-
ley values (Δ Feati) are used. In equations (11) and (12),
BASEvalF+BASEvalI and FeatiF+FeatiI are used. Hence we
present the difference and summation, denoted as Δ and I+F,
just as in Table III. A mockup example is shown in the second
part of Table III. The values under the title ‘Analysis of regres-
sion task’ represent each group’s mean of SHAPley value. For
example, the value 6.96 at column Q1 and the BASEval—F+I
shows the mean of base values over Q1. First, according to (9),
the mean absolute error of the Q1 group can be obtained by
the deltas of base values and feature sets. hence, ΔMAEQ1 =
−0.05 + −0.02 + −0.01 = −0.08. The calculation on group
Q2 is similar to group Q1, but with an additional negative sign.
As for Q3, the mean absolute error of this group can be obtained
by the summation of values from the initial and final model
(I+F). Therefore,ΔMAEQ1 =−0.19= 6.93+−0.61+−0.18
−2×3.17 (the calculation of group Q4 is similar, but with an
additional negative sign). Finally, the average prediction error is
the weighted sum of the mean absolute error from each group
divided by the total number: ΔMAE = −0.08 × 36 + −0.11
× 37 + −0.19 × 6 + −0.42 × 7 / 86= −0.0078, representing
that averagely the model will reduce an error of 0.0078 when
assessing a new person.
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TABLE IV
THIS TABLE SHOWS THE FIRST EXPERIMENT’S RESULTS: DISCRIMINATION BETWEEN ASD/TD

C. Additional Features for This Study

Instead of extracting the acoustic-prosodic features from
inter-pausal units as in [37], [51], we extracted features from
minimum phone units (MPUs) defined in section IV-C. we derive
the conversation-level acoustic-prosodic features similar to VSC
features in the following procedures. For each corner vowel, we
calculate six acoustic-prosodic features: the mean of intensity
(Mean(int)), the mean of F0 (Mean(F0)), the standard deviation
of F0 (ρ(F0)), Harmonic to Noice Ratio (HNR), Jitter, and
Shimmer. Then within each MPU, we calculate three statistical
functionals: mean, max, and standard deviation. The same statis-
tical functionals were used in previous studies [37], [51]. Finally,
we estimate the GC series and calculate proximity, convergence,
synchrony, and GC functions, the same as the conversation-level
VSC features.

D. Experiment1: Classification of ASD/TD

In this section, we compare the ASD/TD classification results
under the conditions: with and without VSC features. We ob-
served that including VSC features gains a higher accuracy than
not including them in all three binary classification subtasks.
Table IV summarizes all the classification results.

1) Comparison Between Single Feature Sets: In the Mild
ASD vs. TD subtask, single feature sets Synchrony[P] (UAR:
0.732, F1: 0.729), GC[P]inv (UAR: 0.782, F1: 0.785), GC[P]part
(UAR: 0.746, F1: 0.751) achieve competitive accuracy (of above
0.70), and is the highest among all the feature sets in Table IV.
Furthermore, feature set Proximity[P] has the highest perfor-
mance in both Moderate and Severe ASD vs. TD subtask (UAR:
0.810, F1: 0.799, and UAR: 0.844, F1: 0.826, respectively).
Besides, training classifiers on acoustic-prosodic features can
achieve high UAR scores (over 0.75) when classifying ASD
and TD, which aligns well with past research [27]. Interest-
ingly, the best-performing feature sets in the Mild ASD vs. TD

subtask (Synchrony[P], GC[P]inv, GC[P]part) is different from
those in Moderate and Severe ASD vs. TD subtask (Proxim-
ity[P]). This observation indicates that the acoustic properties
differentiating severe ASD from TD and those differentiating
mild ASD from TD are different. This difference provides
further empirical evidence in the distinctive nature of the autism
spectrum.

2) Comparison Between Feature Fusions With and
Without VSC Features: Among all feature combinations
without the VSC features, GC[P]part+Synchrony[P] (UAR:
0.843, F1: 0.846) has the highest performance in the Mild
ASD vs. TD subtask. In contrast, among feature combinations
with VSC features, the best-performing combination is
row (n): Inter-VD+GC[VSC]inv + Convergence[VSC] +
Syncrony[VSC]+GC[P]part + Proximity[P] + Conver-
gence[P] (UAR: 0.904, F1: 0.908), which is higher than
GC[P]part+Synchrony[P]’s (6.1% in terms of UAR and
6.2% in terms of F1). Interestingly, Inter-VD, GC[VSC]inv,
Convergence[VSC], Syncrony[VSC], GC[P]part, Proximity[P],
Convergence[P] do not perform well by themselves, but
including these feature complements the results. Furthermore,
the accuracy decreases when these feature sets were removed
from the combination: (n) (resulting in combination:
(o)). Secondly, row (r): Proximity[P] has the highest
performance of all the feature combinations without the
VSC features in both the Moderate and the Severe ASD
vs. TD subtasks. Additionally, the best-performing feature
combination in the Moderate ASD vs. TD subtask is row
(q): FD+GC[VSC]inv+Proximity[P], which is UAR: 8.9%,
F1: 10.5% better than Proximity[P] alone. Furthermore, the
best-performing feature combination in the Severe ASD vs.
TD subtask is row (s): FD+GC[VSC]inv+Proximity[P], whose
result is UAR: 0.1%, F1: 2.9% higher than Proximity[P] alone.
Moreover, removing FD from FD+GC[VSC]inv+Proximity[P]
leave only GC[VSC]inv+Proximity[P] (row: (t)), whose
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TABLE V
ANALYSIS OF THE CLASSIFICATION TASK

prediction accuracy is even worse than only Proximity[P].
These results again demonstrate that regardless of which ASD
symptom group we are distinguishing from TD, including VSC
features can improve accuracy.

In short, there are two major observation from our results.
First, the best prediction accuracy in each subtask is achieved
by combining appropriate feature sets instead of combining
all individual feature sets with high prediction scores. Second,
although the VSC feature sets by themselves do not achieve the
best prediction results, fusing VSC features achieves optimal
performance in all three binary classification subtasks. More
details are shown in our analyses below.

E. Analysis of the Classification Tasks

The classification results have shown that considering VSC
features into feature fusion can improve the classification score
in all three tasks. We further investigate the improvement de-
tails and the influence of the VSC features. To investigate
VSC features influences, we focus on two changes. First is the
changes from the baseline models (prosodic features only) to the
best-performing models of each task, and denote these analyses
as baseline → best-perform. Second is the changes when the

VSC features are removed from the best-performing models and
denote these analyses as w/ VSC → w/o VSC. The changes are
illustrated using model explanation techniques in Section V-B.

By inspecting the model explanation data, we are interested in
several points. First is how many participants were corrected and
misclassified due to the changes. Since the classification score of
the best-performing model should be the highest, the corrected
participants should be more than the misclassified ones. Second,
we are also interested in whether the correction or misclassifica-
tion is attributed to VSC features or other reasons. Table V shows
the participants whose prediction results had changed when VSC
features were added or removed and the main factor that caused
these changes. We present key finding in the following and
leave the complete results to the supplementary material. Last,
all of the feature combinations and single feature sets shown
in Table V, such as (m), (i) (a), are abbreviated as indicated
in Table IV. Our observations from the analyses are described
below:

1) Analysis of the Mild ASD vs. TD Subtask: As shown
in row (p) → (n) in Table V, two participants (21, 12) were
corrected by (n) from (p). The main reason is that the added
VSC features contribute to the correction. Take participant 21,
for example (please see the example on the right of the Table V),
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Inter-VD (denoted as (k)) contributes to the correct classification
because its SHAPley value (0.262) is the largest, which has
the same sign as the decision value of the final model (0.11).
If we exclude VSC features from the best-performing model
(n), resulting in model (o), the prediction result of 12 people
will change. Ten of them will be misclassified, and 2 of them
will be corrected (please refer to row (n) → (o)). Among the
people being misclassified, misclassification is mainly because
of removing the VSC features. The others are mainly because of
the change in base value. To be specific, referring to Participant
4’s example, the feature Proximity[P] has the highest SHAPley
value ((a):0.311). Herefore, the removal of VSC features, leaving
only prosodic features, causes misclassification. On the other
hand, the example of Participant 2 shows that his/her base value
increased from 0.2 to 0.36 (0.2+0.16), which is higher than
any of the feature sets’ SHAPley values. Hence we consider the
change in base value to be the main reason for misclassification
when VSC features were removed from the best-performing
model (n). However, there are 2 participants whose prediction
results turned correct. One example is Participant 14, whose
prediction result turned correct that the feature Proximity[P]’s
SHAPley value ((a): −0.404) is lowest and in line with the
decision value (−0.25).

2) Analysis of the Moderate ASD vs. TD Subtask: According
to the row (r) → (q) in Table V, 9 participants (2, 24, 28, 30, 31,
33, 39, 41, 48) were originally misclassified by the initial model
but corrected by the final model. Among these participants,
except Participant 28, the other 8 participants were correctly
classified due to the inclusion of GC[VSC]inv (denoted as (i)).
As for Participant 28, the change in base value probably is the
reason for him/her to be corrected. As shown in row (r) → (q),
Participant 28’s base value difference (−0.28+−0.1=−0.38)
is most likely to be the reason the model classified this person
as ASD (−0.07).

In addition, the inclusion of FD+GC[VSC]inv also induces
some classification errors (23, 27, 47). Refer to Participant
23’s example; the SHAPley values of FD ((m): 0.084) and
GC[VSC]inv ((i): 0.192) are in line with the final decision value.
Hence we consider adding FD+GC[VSC]inv had made this
participant misclassified.

3) Analysis of the Severe ASD vs. TD Subtask: As shown in
the row (r) → (s) in Table V, 6 participants (13, 19, 23, 24, 25,
35) were corrected by the final model (t) from the initial model
(s), whereas there are 4 additional misclassified participants (6,
28, 38 and 45). The corrected participants were either corrected
because of added VSC features or the change on base values.
As for the misclassified people, participants 6 and 28 are mainly
because of change in base values. Please refer to participant
6’s example, his/her base value had decreased 0.1 that made
the decision score lower than 0, hence this participant were
incorrectly classified as ASD. In addition, participant 45 was
also misclassified. Interestingly, the either the change in base
value (−0.03) and his/her Shapley values of VSC feature sets
((m):−0.076, (d):0.073) seems not high, making us consider
them not affective to the result. Furthermore, This’s participant’s
original decision score was a relatively large value (0.62) when
having only one feature set Proximity[P] (a). According to these

observation, we think the SHAPley value of Proximity[P] in this
task was large. However, after the inclusion of VSC features,
the SHAPley value of this feature set decreased, indicating that
the influence of Proximity[P] had become weaker when being
fused with VSC features. Finally, removing VSC features from
the best-performing model in this task (as shown in the row
(s) → (t)) will cause 6 participants being misclassified, but one
participant being corrected. Since the misclassified participants
are more than corrected participants, the classification score had
therefore decreased.

In short, this analysis comprehensively analyzed the differ-
ences between the baseline and best-performing models and
the changes when we removed the VSC features from the
best-performing models. By inspecting the changes in SHAPley
values, which represent the contribution of the feature sets, and
the changes in decision values, we found that including the VSC
features corrects several samples misclassified by the classifiers
trained with only conventional acoustic-prosodic features. We
observed several possible reasons why the feature fusions with
VSC features could improve the prediction scores. The first
possibility is that the VSC features increase the best-performing
models’ decision scores by directly correcting some misclassi-
fied participants from the initial models. Another possibility is
that the base value, the expected decision score after training
on the training set, changes so that the model tends to make
a better prediction. The other possibility is that including the
VSC features may alter the contribution of each feature set in
the models, and this causes some misclassified samples to be
corrected (for example, Participant 45). This study further under-
scores the inherent heterogeneity of the ASD cohort, i.e., not all
participants express the same atypicality in the prosodic space.
In contrast, some ASD participants show in the articulatory VSC
space instead.

F. Experiment2: Regression of Communication Deficit Score

1) Result of Experiment2: As shown in Table VI, Inter-VD
(MAE: 1.402, pear: 0.431, spear: 0.440, CCC: 0.263) and FD
(MAE: 1.485, pear: 0.406, spear: 0.337, CCC: 0.245) by itself
has the best prediction score among all the individual feature
sets. The best-performing model trained on the feature com-
bination Inter-VD+FD+GC[VSC]inv+Syncrony[VSC] (MAE:
1.36, pear: 0.487, spear: 0.508, CCC:0.289) are composed
of VSC features. The best-performing model outperforms the
baseline model Convergence[P] (MAE: 1.530, pear: 0.273,
spear: 0.279, CCC:0.156), representing the highest-scoring fea-
ture combination without VSC features. Furthermore, we ob-
served that the best-performing model includes the feature sets
GC[VSC]inv and Syncrony[VSC], which do not result in good
regression performance. However, removing these two feature
sets will degrade the prediction score. Our further analysis is in
the Section V-F2 investigates how the feature sets GC[VSC]inv
and Syncrony[VSC] improve the results.

In addition, our previous work develop a deep learning based
method for automatic ADOS coding prediction [19]. In that
work, we trained an attentional GRU network regressor on
converse-level lexical and acoustic embeddings. Although the
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TABLE VI
THIS TABLE SHOWS THE RESULTS OF THE SECOND EXPERIMENT: PREDICTION OF ADOScomm

TABLE VII
RESULTS SHOWS REGRESSION RESULTS COMPARING TO OUR PREVIOUS

WORK [19]

result of the model in our previous study is 8.5% (in terms of
Pearson’s coefficient) higher than the result in this study (refer
to Table VII). This study focuses only on the acoustic part with
inclusion of novel measures of the vowel space characteristics.
In the next section, we dive into more details about the ASD’s
characteristics on vowel space, along with the relationships
between the VSC features and the ASD communication score.

2) Analysis of the Feature Contributions to the Regres-
sion Task: As described in the previous section, includ-
ing GC[VSC]inv and Syncrony[VSC] can improve regression
performances; we further analyze the contributing factors with
SHAPley values. The needed difference (Δ) and summation
(I+F) of SHAPley values from the feature sets Inter-VD, FD,
GC[VSC]inv, Syncrony[VSC] and base values are shown in
Table VIII. These data allow us to attribute the prediction errors
of regression task to each feature set as demonstrated in Section
V-B. The improvement in model performance is evaluated by the
Mean Absolute Error (MAE), which is in lines with the results
in Table VI. It is expected that the MAE of the best-performing
model (denoted as MAEF) should be lower than that of the
baseline mode (denoted as MAEI). In other words, Δ MAE
= MAEF-MAEI is expected to be a negative value. In addition,
we found the Δ and I+F subcolumns under the feature sets
GC[VSC]inv and Syncrony[VSC] are equal. The reason they are

equal is because GC[VSC]inv and Syncrony[VSC] are absent in
the initial model. The SHAPley value of these two feature sets is
zero (they do not affect the model’s prediction). Therefore, the
difference and summation between the initial and final models
are the same.

Table VIII demonstrates the results of the analysis of
the differences between the initial model (I: Inter-VD+FD)
and the final model (F: Inter-VD+FD+GC[VSC]inv+ syn-
chrony[VSC]). First, among the participants in group Q1, fea-
ture sets ΔBASEval, ΔInter−VD, ΔFD, ΔGC[VSC]inv and
ΔSyncrony[VSC] are negative. Together with the (9), these
values will result in a negative ΔMAE. Hence, it implies that
the all these feature sets and base values contribute to correcting
the regression errors, making the average MAE of group Q1
decrease (refer to the row Q1 (36) and column ΔMAE). Sec-
ond, among the participants classified as Q2, the results show
ΔBASEval, ΔInter−VD and ΔFD are negative, which will
increase the prediction error (notice that there’s an additional
negative sign in (10)). Hence these feature sets cause the mean
absolute error to increase.

Third, the average MAE of group Q3 will decrease by 0.114
(ΔMAE=−0.114) if GC[VSC]inv and Syncrony[VSC] are in-
cluded. As shown in the Section V-B onlyY and the subcolumns
of Table VIII denoted by I+F matters. In the subcolumns I+F
of Table VIII, it shows that only the feature sets GC[VSC]inv
and Syncrony[VSC] are positive. Although GC[VSC]inv and
Syncrony[VSC] increased the mean absolute error, the Inter-VD,
FD feature sets still reduced the error.

Lastly, the average MAE of the final model has decreased
by 0.128 from the initial model in group Q4. The result shows
that the I+F of the base value, Inter-VD, and FD’s SHAPley
values are positive. According to (12), these positive values
will reduce the MAE in this group. In contrast, GC[VSC]inv
and Syncrony[VSC] increase the MAE because their SHAPley
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TABLE VIII
THIS TABLE DEMONSTRATES THE ANALYSIS OF CHANGES IN PREDICTION RESULTS WHEN GC[VSC]inv+SYNCRONY[VSC] IS ADDED TO INTER-VD+FD

Fig. 4. Top seven features according to SHAPley values. This figure shows the
correlation between features’ values and their corresponding SHAPley value, in
which the features are from feature sets: formant dependency and Inter-VD.

values are negative. The result implies that feature sets Inter-VD
and FD are the major feature sets that help improve prediction
accuracy.

In a nutshell, we observed that the inclusion of feature sets
GC[VSC]inv and Syncrony[VSC] have decreased the prediction
error by 0.031 ((−0.036 × 36 + 0.004 × 37 + −0.114 × 6
+ −0.128 × 7) / 86) in average. Furthermore, by performing
feature fusion with GC[VSC]inv and Syncrony[VSC], the pre-
diction accuracies of the Q3 and Q4 groups, have increased the
most (ΔMAEQ3 = −0.114, ΔMAEQ4 = −0.128). In other
words, the participants initially predicted lower and higher but
ultimately predicted higher and lower than the real assessment
are the groups that benefit more.

3) Analysis of the Relationship Between ADOS Communi-
cation Deficit Score and Feature Sets: FD and Inter-VD: Two
utterance-level VSCs feature sets, Inter-VD and FD, are ana-
lyzed for having competitive single feature prediction results in
this task. According to the SHAPley analysis demonstrated in
Fig. 4, all features in FD are positively correlated to their SHAP-
ley values. Furthermore, features representing the dispersion of
three corner vowels (BCC, BCV, ...) are negatively correlated
to their SHAPley values, and formant centralization ratio (FCR,
which has the opposite meaning to inter vowel dispersion) is
positively correlated to their SHAPley values. These results
indicate that participants with higher ADOScomm correspond to
larger feature values of features in FD and lower feature values
of that in Inter-VD. This result implies that ASD participants
with more severe communication symptoms have less flexibil-
ity in their articulators and lower vowel intelligibility. Fig. 5

Fig. 5. Four examples of the high-score (the figure to the left) and low-score
(the figure to the right) ASD participants’ vowel space characteristics.

demonstrates the distribution of corner vowels on vowel space
from two different severity-level ASD. According to this figure,
the higher ADOScomm ASD participant might have a higher
correlation between F1 and F2 or a lower distinction between
vowel clusters. Notice that participants with low severity scores
might still have overlap in vowel space, and participants with
high severity scores might have distinct vowel clusters. The
patterns of distinct vowel clusters and dependant formant values
can only be considered as factors in identifying ASD.

VI. DISCUSSION

This study uses formants of corner phones to model vowel
intelligibility, vowel variability, and articulator flexibility, which
are common measurements for autistic traits in past research.
Our experimental results demonstrate that these measurements
can effectively distinguish ASD and TD participants. In ad-
dition, both vowel intelligibility and articulator flexibility are
associated with ASD’s communication deficit. Furthermore, the
articulation of severe ASD tends to have less vowel intelligibility
and articulator flexibility, which aligns with prior studies [20],
[24], [25]. However, merely vowel intelligibility and articulator
flexibility can not be diagnostic standards; instead, they should
be considered as factors that characterize the speech production
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of ASD participants. Due to the heterogeneity of ASD, the
observation that severe ASD is associated with less vowel intelli-
gibility and articulator flexibility did not apply to all participants
but a significant proportion of them.

Although the proximity, synchrony, convergence, and gradual
changes of VSC features did not achieve competitive results by
themselves, we still observed interesting trends. For example,
we found less severe ASD participants may have closer vowel
intelligibility to their investigators, indicated by the proximity
metrics on vowel intelligibility. However, only a few features
from vowel-intelligibility proximity features, the proximity of
within-class variance, between-class variance, and total vari-
ance, correlate to ASD communication deficit score. The other
features, like proximity of within-class covariance in the same
category, did not show a significant correlation, and thus the fea-
ture set Proximity[VSC] did not perform well on the regression
task. Perhaps there are factors unrelated to ASD that affects the
robustness of features related to vowel-intelligibility proximity,
making the features in this set inconsistent.

The limitation of this study is that we only investigate the
acoustics of corner phones in conversations, whereas the ar-
ticulatory dynamics in conversations might be complex. For
example, each phone may be influenced by its contextual phones,
and hence the phone sequences such as diphones and triphones
need to be considered to understand better the dynamical prop-
erties of articulatory movement; identifying these phones in
conversations will require advanced methodology. In addition,
Mandarin is a tonal language. The interaction between tones and
formants should also be considered when deriving VSC features.
However, past research has found that young people with autism
exhibit distinctive ways of the third tone, distinguishing them
from typically developing people [18]. Perhaps the vowel space
characteristics, tone, and the interaction of them can better
characterize autistic traits.

Acoustics and language should also be considered jointly
when modeling speech for ASD characterization. The deficit
in communication not only pertains to speech acoustics and ter-
minology usage but also encompasses the acoustics within each
spoken word. Many prior works have established acoustic and
natural language processing algorithms for modeling atypical
patterns to characterize ASD. Furthermore, fusing acoustic and
lexical features have shown competitive prediction results in
our past study [19]. This study further shows that articulatory
acoustics is important in understanding autistic trait. Therefore,
a possible future extension is to explore more acoustic-linguistic
measurements. For example, the acoustics of advanced phonetic
sequences such as triphone ordiphone or the interaction of speak-
ing tone and corresponding acoustic values may be relevant to
modeling the social interaction of ASD. While past research
has successfully modeled communication through lexical and
acoustic inputs, the acoustic measured conditioned on certain
linguistic tokens is yet to be studied.

VII. CONCLUSION

This research characterizes autistic traits by measuring
vowel space characteristics from two aspects: utterance-level
for speech production and conversation-level for interaction

dependency. These VSC measurements are used in training a
classifier to predict whether the unseen testing instance is ASD
or TD (the binary-classification subtasks) and a regressor to
predict the ASD-related communication score (the ADOScomm

regression task). The experiment results demonstrate that the
conversation-level acoustic-prosodic features help classify ASD
and TD. Then, although VSC feature sets by themselves do not
have high prediction scores in the binary-classification subtasks,
encompassing these feature sets can correct the prediction of
several hard-to-classify participants who are originally mispre-
dicted. This observation implies that a distinctive autistic profile
of participants can not be correctly classified by simply looking
at the prosody characteristics (it would require the vowel space
characteristics). Furthermore, according to the SHAPley anal-
ysis, we observe that our VSC features improve the prediction
scores by either directly contributing to the models’ decision
values or indirectly changing the influences of the other features
on the models’ decision values. Next, the regression experiment
shows that VSC features related to formant dependency and
inter-vowel dispersion are positively and inversely related to
ASD communication severity. Additionally, similar to the binary
classification task, we also observe that including appropriate
VSC-related features in feature fusion can improve the predic-
tion score; despite some of these features having low prediction
scores by themselves. Moreover, through SHAPley analysis, we
observe that these types of features correct mostly participants
from defined Q3 and Q4 groups in Section V-B by reforming
the contributing weight of features in the original model.

Lastly, autistic traits is a large umbrella term covering hetero-
geneous behavior symptoms. Speech provides a naturally-rich
information signal that includes multi-faceted manifestations of
autistic traits. For this purpose, this paper provides one of the few
pieces of research in understanding vowel space characteristics
for quantifying ASD participant’s traits during spontaneous
dialogue.
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